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In part 1 of this paper, first and second order analysis of uncertainty is applied to numerical models of 
groundwater flow. The models are cast in state-space form, with boundary conditions and inputs that are 
functionally dependent, but statistically independent, of time. Using a compact matrix calculus notation, 
first and second order Taylor series expansions of the model equations are derived and used to estimate 
the mean and variance-covariance properties of piezometric head predictions, given corresponding statis- 
tics for aquifer parameters: material properties, initial conditions, boundary conditions, and inputs. The 
mathematical results demonstrate that the prediction uncertainty is a function of the magnitude of the 
parameter uncertainty, and sensitivity of the predictions to the parameters. Furthermore, the first order 
estimate of the piezometric head is identical to the dete/'ministic result. Part 2 of this paper, to be pre- 
sented later, will illustrate these and other results through numerous applications of the methodology. 

INTRODUCTION 

A basic objective of the study of groundwater hydrology is 
the prediction of aquifer behavior under natural or stressed 
conditions. Aquifer behavior depends on the spatial and tem- 
poral variability of aquifer properties and other parameters, 
such as boundary values and the strength and location of 
sources and sinks. This parameter variability can, in theory, 
be described in terms of a recognized, deterministic distrib- 
uted field of the parameters in time and space, or in terms of 
the field statistics. The ability to predict aquifer behavior de- 
pends on our knowledge of the variability. That is, do we 
know the true parameter field? Do we know the statistics of 
the field? Or do we estimate each from a few observations? 

The presence of this variability, coupled with incomplete in- 
formation about its description, leads to a description of aqui- 
fer behavior in probabilistic terms. This paper describes a gen- 
eral probabilistic approach for the numerical solutions of 
groundwater flow problems. The method employed, first and 
second order analysis, is used to treat systems with spatially 
distributed and varying properties, complicated initial or 
boundary conditions, and complicated one-, two-, and three- 
dimensional flows in bounded domains. Temporal probabilis- 
tic variations are not covered. 

Part 1 of this paper, presented here, includes a discussion of 
the nature and sources of uncertainty encountered in ground- 
water flow models, with particular attention given to numeri- 
cal models, and a description of techniques available for use 
in the analysis of the effects of parameter uncertainty on 
piezometric head predictions. A brief review of first and sec- 
ond order analysis for the scalar case follows. Finally, the ex- 
tension of these analyses to a general form of numerical mod- 
els is presented, with details of the analysis available in three 
appendices. 

Part 2 of this paper, to be presented later, contains a series 
of numerical examples illustrating the effects of parameter un- 
certainty (material properties, boundary conditions, and ini- 
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tial conditions) on predictions of heads for one- and two-di- 
mensional aquifer flows. 

UNCERTAINTY CONCEPTS IN GROUNDWATER SYSTEMS 

Uncertainty in groundwater systems may be divided into 
two classes: intrinsic uncertainty and information uncertainty. 
The first class derives from the variability of certain natural 
properties or processes and is an irreducible uncertainty in- 
herent to the system. The second class is the result of 'noisy' or 
incomplete information about the system and may be reduced 
by various strategies, notably further measurements and anal- 
ysis. 

The spatial and temporal variation of parameters, such as 
the recharge rate, and spatial variability of properties, such as 
hydraulic conductivity, are extremely complicated and in gen- 
eral defy exact description. For example, the relatively simple 
or large scale spatial changes of properties, such as the change 
of hydraulic conductivity between geological units, can be in- 
cluded in deterministic descriptions. However, smaller scale 
spatial fluctuations are superimposed on the large 'determinis- 
tic' scale variation. The small scale fluctuations, in turn, con- 
tain even smaller scale fluctuations and so on until the prop- 
erty itself ceases to have meaning. Since there is reason to 
believe that this local variability will affect aquifer behavior, 
several authors have developed methods to include it in aqui- 
fer analysis. The general approach [see, e.g., Freeze, 1975; 
Bakr et al., 1978; Sagar, 1978; Dagan, 1979; Smith and Freeze, 
1979] has been to characterize the variations as spatial sto- 
chastic processes or phenomena. Acknowledging the fact that 
this variability is highly complex and Ëreducible, these tech- 
niques do not attempt to manipulate the actual variation of 
properties; instead they attempt to preserve the spatial statisti- 
cal properties of the variation. This approach provides a prob- 
abilistic description of the magnitude, spatial extent and na- 
ture of the effects that the possible range of property 
variations can have on aquifer behavior, particularly piezo- 
metric head. Hence these stochastic property variations are 
described as a form of intrinsic uncertainty. 

Information uncertainty represents the lack, in quantity or 
quality, of information concerning the aquifer system. Esti- 
mates of various properties or descriptive parameters of the 
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system will generally contain many inaccuracies, both small 
and large. These errors arise from a number of sources, such 
as noisy or scarce measurements, and may be statistical or 
conceptual in nature. Thus information uncertainty involves 
errors or the possible range of errors in an analysis of a 
groundwater system, in contrast to intrinsic uncertainty, 
which is a concept describing the intrinsic variability of aqui- 
fer parameters. Another distinction between the two forms of 
uncertainty is that information uncertainty is generally reduc- 
ible through measurements while intrinsic uncertainty is a 
physical variability undiminished by observations. Finally, 
the term information uncertainty can refer to our estimate of 
the true parameter field, or it can refer to our estimate of the 
statistics of the spatial stochastic process. To date, all analyses 
of groundwater flow as a spatial stochastic phenomenon have 
assumed perfect knowledge of these statistics [see, e.g., Freeze, 
1975; Bakr et al., 1978; Dagan, 1979; Smith and Freeze, 1979]. 
This paper makes the same assumption, realizing that it can 
be relaxed at a later time. Thus, below, consider that informa- 
tion uncertainty refers to knowledge of the true parameter 
field and not to its statistics. There is only one true field, but it 
is unknown. A probabalistic description of it is required. 

Intrinsic uncertainty or variability, by its very nature, is in- 
dependent of information uncertainty, but not the reverse! In- 
formation uncertainty, and our knowledge of the true param- 
eter field, depend on the description of intrinsic variability. 
This description can be used to decrease information uncer- 
tainty by, for example, permitting qualified inferences be- 
tween widespread measurements. 

As an illustration of the relationship between intrinsic and 
information uncertainty consider an n dimensional aquifer 
with hydraulic property, K, distributed in space. Suppose that 
this property has a known homogeneous, isotropic, two-pa- 
rameter statistical description, with mean •' and covariance 
Cov (r), where r is the distance between any two points. This 
description has two interpretations. First it represents the spa- 
tial stochastic process from which the true field K is drawn, 
which is one of many possible realizations of K, at least in the- 
ory. Here trend •' and Cov (r) represent the spatial structure 
of K. In the second interpretation •' is an estimate for the true 
field K, and Var [K] =Cov (0), called the estimation variance, 
represents the confidence or 'degree of belief in that estimate. 
These two interpretations span both the concept of intrinsic 
uncertainty, through the idea of a stochastic process, and in- 
formation uncertainty, through the Bayesian concept of de- 
gree of belief [see, e.g., Ramsey, 1950; Savage, 1972; de Finetti, 
1974] in the estimate of the true field. 

Now let m point samples of K be taken in the field, with 
zero sampling error. Then the exact value of K is known at 
these m points and, because of the spatial correlation struc- 
ture, these samples also provide some information about the 
value of K nearby. A new estimate of the K field can be de- 
rived, with reduced information uncertainty as indicated by a 
lower estimation variance. Additional measurements of K, or 
even other parameters correlated or functionally related to K, 
will lead to an even better identification of the K field (i.e., 
even less information uncertainty). The basic statistical prop- 
erties of the K spatial process is unaltered through all this, and 
in fact will often be used to aid in this procedure. 

This illustration argues that although the information un- 
certainty on the true K field is reduced by sampling, the in- 
trinsic uncertainty of the spatial stochastic process is irreduc- 
ible. A particular example is the application of Kriging to the 

estimation of the property K, as described by Delhomme 
[1978]. In Kriging the true field is called a regionalized vari- 
able and there are two characteristic uncertainties, one repre- 
sented by the variogram and one by the estimation variance. 
The variogram describes the random component of the spatial 
variability of the property K and is an irreducible descriptor 
of the system. The Kriging process must take this spatial vari- 
ability into account in order to properly synthesize the avail- 
able data into a map of the property. The estimation variance, 
on the other hand, is a statistical measure of the accuracy of 
the Kriging process. in regions where sufficient data about K 
are available, the Kriging process can achieve good results 
and therefore yields a small estimation variance; where little 
information is available, the variance may be large. In this il- 
lustration, the variogram represents the intrinsic uncertainty 
in the system, while the estimation variance is an expression 
of information uncertainty. 

Intrinsic uncertainty and information uncertainty play dif- 
ferent roles in the prediction of aquifer behavior. Studying the 
effect of the spatial variability of property K on piezometric 
head h leads Bakr et al. [1978] to interpret the predicted mean 
head as a trend, about which there are small scale spatial fluc- 
tuations of head described statistically by the head covariance 
structure. In other words, the spatial stochastic process K be- 
gets a spatial stochastic process h. A 'degree of believer' would 
interpret the results differently. Given that Var [K] represents 
information uncertainty as to the estimate of the actual distri- 
bution of K, he would interpret the predicted mean head as 
the best estimate of the actual distribution of h, and the calcu- 
lated covariance would be a measure of the uncertainty of the 
estimate. This second, information uncertainty, interpretation 
clearly allows the incorporation of sampled data, either utiliz- 
ing the underlying spatial stochastic process [Delhomme, 
1979], or ignoring it [Wilson et aL, 1978]. 

Given that there is significant information uncertainty in 
natural aquifer systems, and given that the stochastic descrip- 
tion of intrinsic uncertainty is incorporated and used profit- 
ably in an analysis of information uncertainty on aquifer be- 
havior, it seems that the 'degree of belief interpretation of 
predictions is the more practical. Besides, once this approach 
is selected, questions concerning the ergodicity of the stochas- 
tic spatial processes [see, e.g., Bakr et aL, 1978; Dagan, 1979], 
become less relevant, as the degree of believc•' explicitly rec- 
ognizes that there is only one realization of the stochastic 
process, which he is trying to estimate. 

The procedures described in this paper and illustrated in 
part 2, however, can be viewed with either interpretation, both 
of which deal with parameter uncertainty. 

UNCERTAINTY IN NUMERICAL MODELS 

Above we have presented a discussion of parameter uncer- 
tainty, uncertainty due to the variability of parameters and 
our knowledge of the variability. Parameters have been de- 
fined to include aquifer properties, boundary values, source/ 
sink strength, and initial conditions. There is another source 
of uncertainty due to the appropriateness of our model of 
aquifer behavior. The model is an abstract description of the 
aquifer system synthesized from available data and informa- 
tion. This abstraction includes a general description of the 
governing equations, the position and nature of the boundary 
conditions, the form of the initial conditions and location of 
sources/sinks to the system, questions of aquifer homogeneity, 
isotropy, etc. This abstraction is called a conceptual model 
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and is ideally a mathematically or intuitively manageable de- 
scription of the system. In most practical problems this model 
is solved numerically by discretizing the aquifer domain in 
time and space. As a result of this discretization a numerical 
model provides only an approximate solution of a conceptual- 
ization of the aquifer situation. More importantly the concep- 
tual model itself may be faulty. All of these sources of infor- 
mation uncertainty about the model are termed model error. 
Often inaccuracies resulting from model error are attributed 
to other sources, in particular parameter uncertainty, so that 
conceptual and other model errors are difficult to isolate, 
much less quantify. 

There are some sources of model error due to the numerical 

discretization that can be accounted for immediately, and thus 
eliminated. One of these is the effect of the spatial dis- 
cretization on the underlying statistics of spatial stochastic 
processes. For finite difference and finite element models with 
constant material propennies within a cell or an element, con- 
tinuous aquifer propennies of the actual domain are spatially 
integrated over cells or elements of the discretized domain. 
Thus the probabalistic description of the spatial process must 
also be integrated. Smith and Freeze [1979] and others have 
failed to recognize this imponnant feature, which results in a 
reduction of the variance of the spatially averaged property 
and an increase of its correlation length. Pann 2 will document 
and illustrate this variance-covariance reduction due to the 

discretization. By properly accounting for this and other ef- 
fects of the discretization, model error can be thought of as 
primarily a description of the effects of a faulty conceptual 
model. 

The remainder of this paper is concerned with methods to 
assess the quality of numerical predictions under parameter 
uncertainty, due to intrinsic variability and/or information 
uncertainty. The role of conceptual model error w'dl be left for 
future research eftonns. 

TECHNIQUES FOR THE ANALYSIS OF UNCERTAINTY 

A variety of procedures are available to treat the effects of 
uncertainty on groundwater flow. Some of these are more 
suited to the complexity and dimension of numerical models. 
The various approaches can be divided into two main groups: 
full distribution analyses and first and second moment analy- 
ses. Full distribution methods begin with a complete specifica- 
tion of the probabilistic propennies of all nondeterministic in- 
puts and parameters of a flow system and attempt to specify 
completely the probability distribution of the resulting flow. 
First and second moment methods assume that the first two 

moments of a random variable or function are sufficient to 

characterize it. On the basis of this assumption, they consider 
only the mean and variance-covariance of the piezometric 
heads and/or flow rates. 

The two most imponnant full distribution techniques are the 
method of derived distributions and Monte Carlo simulation. 

The derived distributions approach is an analytical method 
for deriving the probability distribution of a random function 
given the distributions of its independent variables [Benjamin 
and Cornell, 1970]. The analysis becomes prohibitively com- 
plicated unless applied to simple systems with relatively 
simple probabilistic propennies. An example of a derived dis- 
tribution analysis is Eagleson's [1978] recent evaluation of in- 
filtration due to stochastic precipitation events (temporal vari- 
ability), or Sagar and Kisiel's [1972] examination of parameter 

uncertainty for aquifer pump tests. More widely applicable is 
the Monte Carlo method, which employs numerous replica- 
tions of flow system simulations, with the parameters and 
inputs of each simulation generated at random from their re- 
spective probability distributions. The results of the simula- 
tions are compiled to form estimates of the probability distri- 
bution of the aquifer flow or piezometric heads. This method 
is readily automated and can be applied to analytically com- 
plicated distributed parameter systems. A disadvantage of 
Monte Carlo simulation is that the results are never in the 

closed analytical form that a derived distribution study strives 
for and therefore results are not readily transferable to a new 
situation. Monte Carlo simulations have been applied to the 
investigation of the effects of spatial variability of physical 
propennies in flow through porous media by several authors, 
including Warren and Price [ 1961], Freeze [ 1975], and Smith 
and Freeze [1979]. More will be said of Freeze's work in a later 
discussion of the strengths and limitations of first order analy- 
sis. 

It is often difficult to obtain the probability distributions 
that are input to a full distribution analysis, and only slightly 
easier to estimate their moments. Thus the results obtained, 

which depend on the exact distribution selected, can be decep- 
tive. They may reveal nothing more than an analysis con- 
ducted using only the first two moments. In fact the results of 
full distributional studies are often presented only in terms of 
these moments [see Sagar and Kisiel, 1972; Freeze, 1975; 
Eagleson, 1978]. 

The assumption underlying the first and second moment 
methods is that the imponnant information about the random 
variables (or functions) of interest can be summarized with 
the mean representing the central or expected tendency of the 
variable (or function), and the variance-covariance represent- 
ing the amount of scattering or variation around the mean. 
Unless the third moment (skewhess) or higher moments of the 
variable are relatively large, they are generally of little interest 
in application. An example of a function fulfilling this as- 
sumption is one which is normally distributed. Such a func- 
tion has zero skewhess and other higher moments of odd or- 
der, and all even order moments can be calculated from the 
variance [Benjamin and Cornell, 1970]. Within the framework 
of second moment methods it is, of course, impossible to test 
the assumption that the mean and variance-covariance fully 
describe a function. Thus other methods, in particular full dis- 
tribution methods, should be used when possible to check it. 
For example, in his paper on Monte Carlo simulation of 
steady state one-dimensional flow through uncorrelated 
porous blocks, Freeze [1975] assumed that the logarithm of 
hydraulic conductivity was normally distributed. Using this 
model he studied the second moment propennies of the piezo- 
metric heads along the flow line, finding, among other things, 
that only a portion of the heads pass statistica• tests of nor- 
malcy. Freeze's Figure 4 suggests that truncation of the set of 
possible values that the head can assume near the boundaries 
results in highly skewed head probability distributions in 
those areas. His Figure 6, on the other hand, indicates that for 
coefficient of variation of log K less than or equal to 0.25, the 
predicted heads are in fact approximately normally distrib- 
uted over most of the length of flow. These two results suggest 
that second moment methods may be appropriate when ap- 
plied to (1) systems with second moment inputs and parame- 
ters with relatively small variance, and (2) regions of the flow 
domain in which the truncating effects of boundary conditions 
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are not too important. An example of the second case is a sys- 
tem with uncertain boundary conditions. 

First and second moment methods can be applied in a 
number of ways: perturbation and/or Taylor series expansion. 
In perturbation analyses, the partial differential equation gov- 
erning the piezometric heads is perturbed slightly, yielding a 
new equation which governs the random or fluctuating com- 
ponent of the piezometric surface. Analyses based on Taylor 
series expansions, on the other hand, generally expand analyt- 
ical or numerical solutions of the piezometric head or flow 
governing equation around the expected values of the solu- 
tion's parameters and independent variables. These series ex- 
pansions may then be used to deduce the probabilistic mo- 
ments of the piezometric heads. The perturbation approach 
has been used in both the space [Tang and Pinder, 1977] and 
wave number [Bakr et al., 1978; Gutjahr et al., 1978] domains 
to attack the problem of spatial variability. The latter manipu- 
lates Fourier-Stieltjes integral representations of the probabi- 
listic moments of the logarithm of hydraulic conductivity and 
flow equation, while the former deals with a more familiar de- 
scription of groundwater flow as a function of space and time. 
Analysis in the wave number domain has produced analytical 
descriptions of the second moment properties of heads in 
one-, two-, and three-dimensional flows [Bakr et al., 1978]. 
These results statistically describe flow in aquifers whose 
properties are continuously variable, rather than aquifers with 
properties that vary in discrete blocks or aquifers described by 
lumped parameters. This continuous description is certainly 
the most realistic and is the main advantage of the wave num- 
ber domain approach over any other. However, since bound- 
ary conditions imply a nonstationarity of the random fields 
describing the flow system which has not been dealt with us- 
ing current techniques, most boundary conditions cannot be 
adequately incorporated into the analysis. Analyses in the 
wave number domain produce very satisfying results, but are 
limited to flows of infinite extent where piezometric heads are 
sought. The time-space domain perturbation approach of 
Tang and Pinder [1978], on the other hand, uses a numerical 
model to deal with boundary value problems. Despite diffi- 
culties in their analysis [see Gelhar et al., 1979] their approach 
is equivalent to the Taylor series approach suggested in this 
paper; that is to say, a first order perturbation analysis should 
yield the same information as a Taylor series analysis of the 
same order. 

First and second moment methods based on Taylor series 
expansions have been employed by a number of authors. Cor- 
nell [1972] presented applications of the approach to a wide 
variety of simple hydrologic and water resources problems 
and suggested much wider application. Wilson and Dettinger 
[1980] present a number of simple analytical examples specific 
to groundwater flow applications. A finite element model of 
flow in a confined aquifer was analyzed by Sagar [1978] using 
this approach with a simple one-dimensional flow example. 
The method of analysis used in his presentation is the same as 
that used in this paper; however, in this paper the analysis will 
be applied to a much broader class of numerical models, 
which also happens to include the finite element model de- 
scribed by Sagar. 

REVIEW OF FIRST AND SECOND ORDER ANALYSIS 

In this paper the terms first and second order analysis are 
often used. First order analysis will be defined to be the analy- 
sis of the mean and variance-covariance of a random function 

based on its first order Taylor series expansion. Second order 
analysis will refer to analysis of the mean based on a second 
order Taylor series expansion with the concurrent analysis of 
the variance-covariance still restricted to use of the first order 

series expansion. Defined in this way, the mean derived in 
first and second order analyses may be different; the variance- 
covariance will not. 

First order analysis of the moments of a random function is 
a simple way of estimating its probabilistic properties. Let f be 
a generic function of some random variable x. The function is 
expanded in a Taylor series about the expected value of its in- 
dependent variable, 

I 1 

f (x) = f (•) q- f<l>(x - •) q- •- f<'•>(x - •)'• q- •- ft3•(X -- 9•)3 _[_ .o. 
(1) 

with foo equal to the kth derivative of f with respect to x, eval- 
uated at :•, the expected value of x. Second and higher order 
terms, i.e., terms multiplied by the factor (x - :•)•', k _> 2, are 
neglected as being small compared to the first two terms. With 
these terms neglected, the mean or expected value of f is cal- 
culated to be 

E[f] = • !_ E[f (.•) q- f<l•(x - •)] (2) 

with !_ denoting equals, to a first order approximation. E[f] 
denotes the expected value of f. The expected value is a linear 
operation so that E[a + b] = E[a] + E[b] and E[cb] = cE[b], 
where c is a constant and a and b are two random variables. 

Using these properties of the expected value, 

ff !__ f (•) q. f<'>E[x - :•] -- f (:•) q- f<l)[E(x) -- •] 

_ f(:•) (3) 
since E[x] = :• by definition. The second moment of f can be 
estimated to first order also. The second moment most often 

used in studying random functions is the covariance, or, in the 
case of a scalar function such as f, the variance which is de- 
fined to be E[(f -/)2] ___ o•2. The variance is the second mo- 
ment around the mean value. Using the first order series for f, 
the variance is 

o/2 • E[ {f(:•) q- f{'>(x - :•) - f} 21 
• E[ {f(.•) q- f{!)(X -- .•) -- f(.•)} 2] 

!_ E[ {f(!)(X -- .•)} 2] = [f{!q2E[(x _ •)2] = (f(!,)2Ox2 (4) 

A second order analysis of the mean of f is carried out anal- 
ogously using a second order series expansion for the func- 
tion: 

1 

f (x) 2_ f (•) q- f(')(x - •) q- •- f(2)(x - •)2 (5) 
with & denoting equals, to a second order approximation. 
Taking the expected value yields the second order approxima- 
tion of the mean: 

1 

g[f] = jr 2_ f (•) q- f(l)g[( x _ R)] + T f(2)El(x - •)2] 
1 

= f(•) q- •- f<2>Ox• (6) 
This estimate of the mean is more accurate than the first or- 

der estimate, using information about the expected value and 
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variability 9f x. The second order estimate of the mean, then, 
is actually the expected value of f conditional on the mean 
and variance of x. 

These results are generalized to the case where f and x are 
vectors in the next section of this paper, when describing nu- 
merical models of flow. 

First and second order analyses, in general, can only prop- 
erly be applied to nonlinear systems in which the coefficients 
of variation are a small fraction of one. These analyses, in- 
cluding the ones presented in this paper, are based on the ex- 
pected values of truncated Taylor series expansions. If the 
truncation error is to be small, then the higher order terms in 
the expansions must be negligible; either the higher order de- 
rivatives or the higher moments of the variables must be 
small. Cornell [1972] has suggested that for coefficients of vari- 
ation V •< 0.2, the analysis method is applicable to moderately 
nonlinear systems. This restriction is, of course, in agreement 
with the limitation of second moment analyses to systems with 
moderate to small variances discussed earlier in connection 

with Freeze's work. 

In this paper the methods of first and second order analysis 
will be applied to numerical models of groundwater flow. Be- 
cause of their complexity, neither derived distributions nor 
wave number domain analyses are suited for use in analyzing 
numerical models or aquifer conditions in which numerical 
methods are warranted. Monte Carlo experiments may also be 
limited in cases requiring complicated numerical solutions. 
The numerous simulations required by Monte Carlo tech- 
niques can lead to an enormous computational burden when 
the aquifer requires detailed modeling and has complicated 
boundary conditions, heterogeneous parameters, and/or two- 
and three-dimensional flow. This computational burden will 
generally place serious limitations, raised both by economics 
and expediency, on the accuracy with which estimates of 
probabilistic parameters can be obtained, since the accuracy 
of Monte Carlo experiments is an increasing function of the 
number of simulations carried out. Because of these limita- 

tions on the use of other.methods of anlaysis, first and second 
order analyses of numerical models are a natural choice and 
can generally be made with an accuracy consistent with the 
accuracy of the numerical model itself. 

MATHEMATICAL DEVELOPMENT 

In this section, a first and second order analysis of a class of 
numerical models of flow in porous media is presented. Be- 
cause these numerical models are based on discrete grids, the 
solution obtained at each time step may be conceived of as 
vector of piezometric heads, and the numerical models can be 
manipulated in the form of matrix equations. Upon expansion 
of these equations in a Taylor series, predictions of the first 
and second moments of the piezometric head can be obtained 
through first order analysis. Prediction of the first moment can 
be further refined using second order analysis. 

The State-Space Equation 

The flow of water in a saturated porous medium is de- 
scribed by a differential equation incorporating both mass 
conservation and dynamic (Darcy's law) principles. For ex- 
ample, one-dimensional steady flow is described by 

d(K-•-}--O (7) dx 

where K is the hydraulic conductivity and h is piezometric 
head. For three-dimensional, transient flow in a deformable 
medium, an appropriate expression is [Bear, 1972] 

Oh 

So •- = V. [K Vn] (8) 

where K is the hydraulic conductivity tensor and So is specific 
storage. Many aquifers are commonly modeled with the two- 
dimensional, essentially horizontal flow, 'hydraulic' equation 
[Bear, 1972]: 

son 0 ITxxOh I 0 [ O•hyh I 0 I O•yy 1 
+ • • + •Qi 8 (x - xi) • • - Yi) (9) 

where T•, Tyy, T•y, and Ty• are components of the second 
rank transmissivity tensor, x and y are Ca•esian coord•ates, 
S is aquifer storativity, Q• is the strength of a source/s•k at 
location xi, y•, and 8 is the Dirac delta function. These equa- 
tions can be discret•ed • space and t•e and solved numeri- 
cally us•g various methods, most commonly •ite differences 
or •ite elements. For situations with bounda• conditions at 
•ed locations the numerical equations can be manipulated 
•to the following matr• equation [see, e.g., Pinder and Gray, 
1976], called the state-space equation [Brockett, 1970]. 

dh 
- Ah + Cu (10) 

dt 

where h is the (n x 1) vector of piezometric heads to be solved 
for and n is the number of node points in the discretized grid. 
The notation used throughout the paper is that boldface capi- 
tal letters (e.g., A) indicate matrices and boldface lower case 
letters (e.g., h) indicate vectors. The vector u(m x 1) is made 
up of boundary conditions, both Dirichlet and Neumann. A(n 
x n) and C(n x n) are coefficient matrices and functions of 
model parameters, such as the hydraulic conductivity and spe- 
cific storage, or the transmissivity and storativity. As discussed 
in part 2, these model parameters are not necessarily idential 
to the aquifer properties. The exact form of A and the product 
Cu generally depends upon the modeling method imple- 
mented (e.g., finite difference, finite element), although cases 
do exist, such as some one-dimensional flows, in which the 
same A matrix is used for both finite difference and finite ele- 

ment models. It is also assumed for the present paper that the 
state-space equation is linear in terms of state. Equations (7) 
and (8) fit this model, but (9) requires the further specification 
that saturated thickness at a point remain essentially constant 
over time. Many aquifer situations conform to this restriction. 

The state-space equation (10) specifies that the future piezo- 
metric head at a node point in the discretized aquifer domain 
is a linear function of the current piezometric head, the piezo- 
metric head at other node points in the domain, and the 
boundary conditions. Altogether, the heads are known as the 
state vector; they 'describe the state of the system. Solution of 
the time dependent state-space equation is generafly based on 
a finite difference discretization of the time derivative. The re- 

sult may be written in matrix notation as a state-transition 
equation: 

h(t + At) = O(t + At, Oh(t) + Gu 

= •h(t) + Gu 
(11) 
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where O(t,•, tl) is the (n x n) state transition matrix [Brockett, 
1970] relating the state at time t,• to the earlier state at time tl, 
ß is the particular transition matrix for the state propagation 
from time t to time t + At, so that ß -- O(t + At, t) and Gu(n x 
1) is given by [Brockett, 1970] 

f t+At Gu-- O(t + At, •')Cu0')d•- (12) 

In this study it is assumed that the parameters and boundary 
conditions, and consequently A and u, are constant over At. 
This is actually an assumption of perfect temporal correlation 
for the boundary conditions and parameters. Another choice 
could conceivably have been made but only at the cost of 
greatly complicating the analysis. The state-transition equa- 
tion (11) says that the piezometric heads at some time t 4- At 
are a linear function of the heads at some earlier time t, and 
that a matrix function •, of the parameters can be formed 
which describes the transition of heads from time t to t 4- At. 

The heads at times earlier than t do not affect the head, h(t 4- 
At), predicted by the equation. For this reason, each time step 
can be studied individually and, often in the following, h(t) 
will be referred to as the initial condition for h(t + At). The 
heads h(t + At) are also a function of boundary conditions u. 
The relationship is-assumed to be linear and described by the 
matrix function of parameters, G. 

The transition matrix • and the matrix G are a function of 

the time integration method used. Some of the forms that may 
be taken are: 

Explicit 

Fully implicit 

•I• '- (I -- AAt) -l 

ß = I + AAt G -- CAt (13a) 

G = (I - AAt)-•CAt 

= •CAt (13b) 

Exponential [Brockett, 1970] 

1 ß = I + AAt + •- A2At 4- .... exp (AAt) 

G=At I+•-AAt+ •-A2At 2+... C 

= -A-•[I - exp (AAt)]C (13c) 

where I is an identity matrix of the same dimension as A (.i.e., 
n x n). Obviously, ß and G may be very nonlinear functions 
of A and C, and thus are generally very complicated functions 
of the parameters. In addition, they depend explicitly on the 
time discretization interval, At. 

The steady state configuration of heads may be calculated 
by letting d h/dt = 0 where 0 is a null vector of dimension (n 
x 1). The resulting matrix equation is 0 -- Ah 4- Cu, which 
yields a steady state vector of heads described by 

hs- Gu (14) 

where G -- --A-IC. Notice that the steady state heads are a 
function of the parameters and boundary conditions but of 
course are not a function of initial conditions or time step At. 

Taylor's Series Expansion and Vetter Calculus 

The methods of predicting to second order the mean, vari- 
ance, and covariance of a function require a Taylor series ex- 
pansion of the function in terms of its uncertain independent 
variables. Because h(t + At) is a sum of matrix products, and 
the matrices are functions of the numerous model parameters, 
a special notation helps to conveniently express the Taylor ex- 
pansion. Vetter [1973] has proposed a notation that allows the 
manipulation of derivatives of matrices with respect to matri- 
ces. Derivatives of vectors with respect to vectors, and so on, 
are specializations of his calculus. In addition, Vetter [1973] 
has derived the proper form of the Taylor series expansion of 
matrices. Because of its compact form and the completeness of 
the theory as derived by Vetter, his notation will be employed 
here. In addition, the calculus has the advantage that all ar- 
rays are either vectors or matrices and no higher dimensioned 
tensors are required. Because the notation will be unfamiliar 
to most readers, a basic introduction to the aspects of Vetter 
matrix calculus required in this paper is presented in Appen- 
dix A. 

The Taylor expansion of a vector, derived by Vetter [1973]' 
is 

f(Y) -- f(Yo) + • •.. [Oy,t•f]. (y - yo) *•' (15) /•=1 

where f is a vector function of some other vector y, and Yo is 
the value of y around which the expansion takes place. [Dy,•,f] 
is the kth derivative of f with respect to the transpose of y, 
evaluated at Yo, the prime indicates matrix transpose, and (y - 
yo) *n is the result of k Kronecker products (see Appendix A) 
of (y - Yo) with itself. As a result of Vetter's notation, this 
equation looks very much like the usual Taylor expansion of a 
scalar (1). Notice, however, that if f is an n x 1 vector and y 
has dimension p x 1, then Dy,•, f has dimension n x if' and (y - 
yo) *•' is a if' x 1 vector. Although the notation is compact, the 
expansion involves matrices of very large dimension. Even a 
second order expansion can involve matrices that are prohibi- 
tively large unless the structure of the derivative matrices are 
taken into account. Fortunately, the structure of many 
groundwater flow models is such that the derivative matrices 
are very sparse, and great computational savings can be ob- 
tained. In fact, second order estimates can be computed ex- 
actly through manipulation of matrices no larger than the co- 
variance matrices involved. 

To first order the Taylor series is 

f(y) _l f(Yo) + (Dy,f)(y- Yo) (16) 
where __l signifies equals, to a first order approximation. Tak- 
ing the expected value of this, the mean of f is estimated to 
first order by 

E[f] = {• __l E[f(•)] + E[(Dy,f)(y - •)] 
(17) 

"- f(9) 4- (Oy,f)E[y -- 9] ---- 

where it has been assumed that the expansion is around the 
expected value of y, Yo = E[y] = 9. Notice that both f(]) and 
(Dy,f) are constant. The first order estimate of the mean is ex- 
actly the value obtained through the application of a tradi- 
tional deterministic approach. This estimate of the mean is the 
expected value of f conditional on the expected value of y. 

To second order the estimate of the mean f is, under the 
same assumption, 
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, I ,2] E[f(y)l - i'- f($) + (Dy,f)E[y - •r] q- 7 (Dyaf)E[(y - •) 
1 

+ • Dbh[(b -- l•) ß (h(t) - fi(t))] 
1 

= f($,) + •- (Dy,,f)El(y - (18) 
I 1 

+ O..(u - a) *z + - a) ß (b - fi)] 
where E[(y - 9) '2] is a vector of the elements in the covari- 
ance matrix of y. The second order mean is the expected value 
of f conditional on the mean and covariance of y. Thus the 
second order mean includes an additional contribution that 

depends on the amount of variation or error that may be ex- 
pected to exist between the mean value of y and its true value. 
This contribution is also a function of the nonlinearity of f 
near 9. As the function f becomes more nonlinear, the result of 
variations of y about the mean 9 are likely to be more impor- 
tant. For a highly nonlinear function of y, a first order or 'de- 
terministic' model may yield misleading results even when the 
estimate of the independent variable y is subject to only small 
errors. When y is uncertain or varies about its mean, the sec- 
ond order estimate of i • will generally be more accurate than a 
deterministic estimator. However, caution should be exercised 
when the difference between first and second order estimates 

is significant, as this probably indicates such extreme nonlin- 
earity that the second order estimate is inadequate as well. In 
such cases, Monte Carlo simulations or other full distribu- 
tional techniques may be required. Generally, though, it is ex- 
pected that first order estimates will be adequate. 

The covariance of f may be approximated to first order by 

Cov (f) = eI(f- b(f- 

E[ + (Oy,f)(y - - + (Oy,f)(y - - '] 
-- E[(Dy,f)(y -- •r)(y- •)'(Dy,f)'] (19) 

= (Dy,f)E[(y - •)(y -- •)](Oy,O t 

-- (Oy, 0 Cov (y)(Oy,f)' 

with Cov (y) the covariance of y and (Dy,f) evaluated at the ex- 
pected value of y. Notice that the covariance of f is a function 
of the uncertainty or variability of y, and the sensitivity of f to 
y in the neighborhood of 9. Thus any elements of f that are in- 
sensitive to y will be little affected by uncertainty in y. Alter- 
natively, if y is known very well (i.e., small covariances), then 
f will have small covariances unless f is very sensitive to y. 

Estimate of the First Moment of Piezometric Head 
for Transient Flow 

Applying first and second order Taylor series expansions to 
numerical solution of the state-transition equation for piezo- 
metric heads in an aquifer (11) yields 

h(t + At) & •bfi(t) + Gfi + Db(b - fi) 
+ Du(u - fi) + Dh[h(t) - fi(t)] (20a) 

and 

h(t + At) & •bfi(t) + Gfi + Db(b- fi) + Da(u- fi) 

1 

+ Dh[h(t) -- fi(t)] + •- Dbb(b -- 6) *2 
1 

+ • Oba[(b - b) ß (u - fi)] 

1 

-3- • Ouh[(11 -- fi) * (h(t) - fi(t))] 
1 

+ •- Dhh[h(t) -- fi(t)] '2 
1 

-3- • Dhb [ {h(t) -- fi(t)} ß (b - fi)] 
1 

+ • Oh,[(h(t) - fi(t)) ß (u -- fi)] (20b) 
respectively. The operator. signifies a Kronecker product (see 
Appendix A). The •b and G denote the matrices ß and G eval- 
uated at the expected value of the parameters. Also b is a vec- 
tor of the uncertain parameters. An abbreviated notation has 
been adopted in this equation and will be continued through- 
out the paper; that is Db, D., Dh are defined to be the deriva- 
tive or sensitivity matrices of h(t + At) with respect to the 
transpose of the parameters b', the boundary conditions u', 
and the initial conditions h'(t). The second derivatives ofh(t + 
At) with respect to parameters, boundary conditions, and ini- 
tial conditions are denoted by D matrices with double sub- 
scripts. All of these derivative matrices are evaluated at the 
expected values of b, u, and h(t), i.e., b, fi, fi(t). A discussion of 
the various D matrices above is presented in Appendix B (first 
derivatives) and Appendix C (second derivatives). 

Taking the expected value of (20a) and (20b) yields first and 
second order estimates of the mean of h(t + At): 

/•(t + At) • ß fi(t) + G fi (21a) 
and 

1 

/•(t + At) __.2 •b fi(t) + (] fi + •- DbbE[(b -- •).2] 
+ DbhE[(b -- fi) ß (h(t) - !i(t))] (2lb) 

The second order mean above was derived under the assump- 
tion that the boundary conditions u and the parameters b are 
uncorrelated. It was also noticed that h(t + At) is a linear func- 
tion of both u and h(t), and thus Dhh, D,,, D,h, and Dr, are 
null matrices. Finally, use is made of the fact that the second 
order contribution 

1/2 DbhE[(b -- •) ß (h(t) - fi(t))] 

is equal to 

1/2 OhbE[(h(t) - fi(t)) ß (b- fi)] 

to simplify the form of the second orde• mean; thus the fourth 
term in (2 lb) is the sum of the two contributions. 

Examination of (2lb) reveals that the second order contri- 
butions to the mean are only due to parameter uncertainty or 
variability; this is because the equations of a numerical model 
of groundwater flow are generally nonlinear in their parame- 
ters, such as hydraulic conductivity. For this reason a determi- 
nistic model may be expected to yield inaccurate results in the 
presence of parameter uncertainty, unless special measures 



156 DETTINGER AND WILSON: UNCERTAINTY IN GROUNDWATER MODELS 

are taken in fitting the parameters to obtain a 'best' model 
performance. A simple application of expected values may be 
inadequate. 

Variations of the boundary conditions u around their ex- 
pected values do not affect higher order estimates of the mean 
heads. In applying a numerical model to a system with no un- 
certainty in parameters, such as transmissivities or per- 
meabilities, a deterministic estimate of the mean piezometric 
heads is sufficient. 

Estimate of the Second Moment of Piezometric Head 
for Transient Flow 

The first order estimate of the covariance of heads at time 
t + Atis 

Ph(t + At) & E( {Db(b - fi) + Du(U - fi) + Dh(h(t) - fi(t))} 
{DbCo - •) + Du(u - fi) + Dh(h(t) - fi(t))} ') 

-- DbPbDb' + DbPbh(t)Dh' + DuPuDu' (22) 

q- DuPuh(t)Dh' q- DhPhb(t)Db' q- DhPhu(t)Du' 

+ DhPh(t)Dh' 

with Py (t) deftned to be the covariance matrix of the vector y 
at time t and Pyz(t) equal to the cross-covariance matrix of y 
and z. By definition, Pyz --' Pzy'. The derivative matrices D• 
and Du are equal to ß and G, respectively, as shown in Ap- 
pendix B. To keep this expression for Ph(t + At) simple, it has 
been assumed that the parameters and boundary conditions 
are uncorrelated; .i.e., 

Pbu --- E[(b - fi)(u - fly] = 0 

is a null matrix. Because the matrix product DD' for any real 
matrix D is positive semidefinite, the first order estimate of 
P•(t + At) always meets the requirement that all covariance 
matrices be positive semidefinite. 

DD' is a diagonal matrix for only a small class of matrices 
D, suggesting that the covariance matrix P•(t + At) will not 
generally be a diagonal matrix even when Pu, Pb, etc., are; 
that is, the elements of h(t + At) will often be correlated even 
when u, b, and h(t) are not. On the other hand, if the D matri- 
ces are diagonal, then Ph(t + At) assumes a correlation struc- 
ture that is similar to the correlation of the uncertain proper- 
ties at time t. Thus the covariance matrix P•(t + At) is affected 
by two important length scales: (1) the correlation length of 
the uncertain properties at time t and (2) the distance over 
which the heads are sensitive to spatially distributed parame- 
ters. The two 'length scales' interact so that generally Ph(t + 
At) is correlated over longer distances than the uncertain pa- 
rameters, etc. 

Experience shows that in most cases, P•(t q- At) is greater 
than P•(t), in the absence of measurements. Thus as time pro- 
ceeds, uncertainty regarding the piezometric heads in an aqui- 
fer grows at a rate which depends on the sensitivity of h(t q- 
At) to the parameters, boundary conditions, and initial condi- 
tions, and depends on the amount of uncertainty in each. 
When the derivative matrices or covariance matrices contain 

large numbers (high sensitivities or uncertainties), the increase 
in uncertainty at each time step can be significant. 

The cross-covariance matrices in (22) propagate with each 
time step as follows' 

Phb(t + At) -- E[(h(t) - fi(t))Co - l•)'l 

& E[ {DbCo - fi) + Du(u - •) + Dh(h(t) - fi(t))} 

{b- fi} 'l 

-- DbPb + DhPhb (t) 

and 

(23) 

Phu(t q- At)----- DuPu + D•P•u(0 (24) 

where Pub is again assumed equal to a null matrix. The pa- 
rameter and boundary condition covariances are not a func- 
tion of time as a result of the assumption throughout this pa- 
per that b and u are constant in time. 

Estimates of First and Second Moments 
for Steady Flow 

If the boundary conditions are specified such that the ex- 
pected value of the predicted heads approaches a steady state 
value, then so too will the covariance matrix. The steady state 
approached by the heads is given to first and second order by 

hs & Gfi + Ob(b -- I•) + Ou(u - fi) (25a) 
and 

1 

hs • (]fi + Db(b - li) + Du(u - fi) + •- DbuI(b - I•),(u - fi)l 
I 1 

+ •- Dub[(u -- fi),(b - li)] + •- Dbb[(b -- 1•)'21 (25b) 
where the D matrices, in this case, denote derivatives of hs and 
where it has been noted that Duu is a null matrix. Taking the 
expected value of these two equations yields first and second 
order estimates of the steady state mean: 

fis -- E[hs] & GO + DbE[b - fi] + DuE[u - fi] = GO (26a) 
and 

1 

fis :---Gfi + • DbbE[(b - •)'21 (26b) 

when it is assumed that b and u are uncorrelated. Notice that, 
as in the case of transient heads h(t + At), the first order mean 
is the same as a deterministic prediction, while the second or- 
der mean includes contributions due to parameter uncer- 
tainty. The steady state value that the covariance of heads ap- 
proaches is given to first order by 

Cov (hs) -- Ph(s) = E[(hs- ils)' (hs - 
(27) 

& DbPbDb' + DuPuDu' 

The steady state covariance of piezometric heads is a function 
only of uncertainty in parameters and boundary conditions 
and does not depend on uncertainties in the head prior to 
achieving the steady state. This suggests that the contribution 
of initial condition uncertainty becomes less important as time 
passes. The steady state covariances can be obtained by allow- 
ing the second terms in (23) and (24) to vanish as the initial 
conditions cease to contribute to head uncertainty. 

Comments 

As long as the numerical solution method for steady state of 
transient piezometric heads can be conceived in a state-space 
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form, A and ß matrices can be derived or approximated. A 
Vetter-Taylor series expansion based on exact derivatives can 
be used to yield first and second order head estimates. Al- 
though computationally burdensome, the derivative matrices 
can also be found through numerical methods if exact meth- 
ods are prohibited by an excessively complicated model struc- 
ture. Numerical derivatives should be avoided if possible since 
the advantage of the well-ordered sparcity of the derivative 
matrices (especially the second derivatives) would be difficult 
to capture in an approach based on approximate derivatives. 

The results derived in this section are quite general, since 
no specification has been made of the structure of A, C, and u, 
or the time integration scheme used, i.e., the form of the ß 
and G matrices. In Appendices B and C, equations for the de- 
rivatives of h(t + At) required in the above analysis are pre- 
sented. Although several of the formulas in those appendices 
depend on the precise model formulation, this does not in- 
dicate any real limitation of the analysis described above. 

COMPUTATIONAL BURDEN OF FIRST 

AND SECOND ORDER ANALYSES 

Computationally, the analysis described above is consid- 
erably more burdensome than a simple deterministic solution 
for the piezometric heads. If a full matrix inversion is per- 
formed to solve for the steady state heads (14), then the num- 
ber of multiplications and divisions is of order n 3 (n equal to 
the number of nodes) with most of the burden arising in the 
formation of the G matrix. If the banded nature of the coeffi- 

cient matrices is taken into account, great computational sav- 
ings can be obtained, reducing the complete deterministic so- 
lution to O(n 2) multiplications for a square grid [Dahlquist and 
Bjorck, 1974]. The matrix inversion must be carried out if a 
first or second order analysis is to be applied. Equation (27) 
for the head covariance represents 0(2nœ • + 2nr 2) additional 
operations, where œ is the number of uncertain parameters de- 
scribing aquifer properties and r is the number of uncertain 
boundary conditions. In a one-dimensional flow problem, n = 
œ and n >> r, implying O(2n 3) additional operations, or O(3n 3) 
total operations. For two-dimensional flows œ • kn, where k = 
2 for the !ink hydraulic conductivities in the finite difference 
solution of part 2, and k < 1 for some finite element models; 
thus operations total O[(2k • + l)n3]. A second order analysis 
of the mean can be enormously burdensome. However, if the 
simple and sparse structure of the Dbb matrix is taken into ac- 
count in (26b), the operations may add only an additional 
0(3nœ •) steps. 

Compare this to a Monte Carlo simulation which requires 
the solution of a large number of matrix equations (14), thus 
requiting from O(mn •) to O(mn 3) computational steps, where 
m is the number of simulations (usually in the hundreds) re- 
quired to obtain statistically meaningful results. An important 
additional burden is the generation of the random parameters. 
The procedure, outlined by Smith and Freeze [1979] or Wilson 
[1979] for generating spatially correlated parameters appears 
to require at least one inversion or decomposition of a matrix 
describing the interrelationship of the parameters. The matrix 
chosen by Smith and Freeze is relatively simple, but more re- 
alistic correlation structures require full covariance matrices 
to be decomposed [Wilson, 1979]. The result of this decompo- 
sition must then be multiplied by one vector ofœ random de- 
viates for each of the m simulations. These two steps require 
O(p 3) and O(mœ •) multiplications, respectively, bringing the 

total computational requirements for Monte Carlo simulation 
to O(mn • + p3 ..[. mp2) or O(mn 3 + p3 ..[. mp2) depending on the 
deterministic solution scheme employed. 

On the basis of these rough estimates of computational re- 
quirements, first order analysis will usually be much less ex- 
pensive than Monte Carlo simulation for large problems 
where analytical solutions do not exist. If it is assumed that 
both methods employ the same matrix inversion scheme, then 
the ratio of first order analysis to Monte Carlo simulation 
computational requirements is roughly 

(2k • + 1)n 3 
k3n 3 + mk•n • + mn 3 

with p • kn as above. When k • I and m is small compared to 
n, this ratio is 3/(1 + m), which is a very small number. When 
m = n, the ratio becomes 3/(2 + m), still a small number. On 
the other hand, if all of the matrix inversions are carried out 
taking advantage of the band structure of the coefficient ma- 
trices, the ratio can be recomputed, leaving Monte Carlo sim- 
ulation in a better position for most grid systems. The ratio 
may be estimated at approximately 

2k•n 3 

mn • + k3n 3 + mn•k • 

which reduces to 2n/(2m + n) when k • 1. Thus the ratio is 2 
when m << n and 2/3 when m • n. 

Comparison of the computational requirements of first or- 
der analysis and Monte Carlo simulation is very tricky since 
the two methods may be designed to return very different in- 
formation and since the computational burden is distributed 
differently. For instance, the estimates above all assume that 
the first order analysis returns the full head covariance matrix. 
Implicitly it has been assumed that the Monte Carlo simula- 
tions returned only the mean and variances, having neglected 
the additional O(mn 2) operations required to evaluate the cor- 
relations of the Monte Carlo head results. If only the head 
variances were required of a first order analysis, nearly half of 
the multiplications in (27) could be avoided. This would shift 
all of the ratios above even more in first order analyses favor. 
More importantly the number of multiplications in the first 
order analysis can be greatly reduced by taking advantage of 
the correlation structure, assuming zero correlation for param- 
eters poorly correlated, and banding the covariance matrix. 
Finally, first order analysis explicitly provides sensitivity ma- 
trices D, which are very useful in designing data collection 
programs and in the solution of the inverse problem [Wilson et 
al., 1978; Wilson and Dettinger, 1978]. 

Note that second order analysis and nonsteady state first or- 
. 

der analysis of large numerical models are not usually as eco- 
nomical as the steady state first order analysis just described. 

SUMMARY AND CONCLUSIONS 

The first and second order analyses of numerical models 
presented in this paper can be used in examining a broad 
range of groundwater flow problems with many different grid 
geometries, aquifer properties and boundary conditions. Ho- 
mogeneous or nonhomogeneous, isotropic or anisotropic, uni- 
form or spatially varying parameters and boundary conditions 
can be studied through the proper choice of covariance matri- 
ces. Thus the analysis presents a useful alternative or com- 
plement to Monte Carlo methods, in studies of the effects of 
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information uncertainty and/or intrinsic variability on 
groundwater flow and piezometric head predictions. 

The derivation presented is limited to systems with bound- 
ary conditions and aquifer properties that are statistically un- 
correlated with each other and in time. As noted earlier, this 
does not indicate a true restriction of the technique, rather it 
represents a simplification by the authors in the interests of 
clarity. The results have also been limited to numerical mod- 
els that can be conceived as state-space models, i.e., linear in 
the state or piezometric heads, and cast in the form of (10). 
Again this equation is simply chosen as a good example since 
it is sufficiently general to describe many numerical model 
structures. First and second order analyses are also applicable 
to other model formulations, although models that are highly 
nonlinear in the state must be regarded cautiously. Finally, 
model error is not included in the results above, although it 
could be if the error statistics were known. 

Within the framework of these assumptions, first and sec- 
ond order analysis leads to a number of generalities con- 
cerning uncertainty about piez0metric heads' predictions: 

1. To first order, the expected value of piezometric heads 
will be identical to the heads predicted by deterministic meth- 
ods. 

2. Uncertainty in these head levels, as measured by the 
variance of a prediction or estimate, is a function both of the 
amount of uncertainty concerning aquifer parameters, and of 
the sensitivity of the heads to these same parameters. 

3. An improved estimate of the heads, as achieved 
through a second order analysis, may differ from the first or- 
der estimate if there is important uncertainty concerning pa- 
rameters of the aquifer that enter the predictions of head in a 
nonlinear fashion. Examples of such parameters are trans- 
missivity and storativity or hydraulic conductivity and specific 
storage coefficient. In a state-space formulation, boundary 
and initial conditions enter predictions linearly and the corre- 
sponding uncertainties do not affect second and higher order 
estimates. 

4. Uncertainty of the sygtem state generally varies with 
time, increasing or decreasing as the aquifer system moves 
into states that are more or less sensitive to the sources of un- 

certainty. The assumption that the statistics of boundary con- 
ditions and aquifer properties are constant in time, eliminates 
the possibility that sources of uncertainty vary in time, al- 
though this assumption is not necessary to the method of 
analysis. 

5. As the expected value of the heads approaches a steady 
state, the uncertainty of the head prediction approaches a 
steady state of its own. If the state approached by the heads is 
independent of any initial conditions, then the head uncer- 
tainty will be independent of initial conditions and initial con- 
dition uncertainty as well. 

6. The first and second order analysis procedure can be 
applied to nonlinear systems with 'reasonably small' coeffi- 
cients of variation. Part 2 will demonstrate that many field sit- 
uations meet this constraint. 

7. Two length scales of the aquifer affect piezometric head 
uncertainty: the length over which aquifer properties are cor- 
related and the length at which heads are still sensitive to pa- 
rameter variation or variability. These two interact so that in 
general heads are correlated over a considerably longer dis- 
tance than the aquifer properties. 

8. First and second order analysis is usually much less ex- 
pensive to apply than Monte Carlo simulation. The trade-off 
is cost and accuracy, i.e., loss of accuracy with first and second 

order analysis due to the Taylor series approximation; loss of 
accuracy with Monte Carlo simulation due to a limited num- 
ber of simulation experiments. 

9. First and second order analysis explicitly provides sen- 
sitivity matrices D which are very useful in the design and op- 
eration of data collection systems and operations [Wilson et 
al., 1978; Wilson and Dettinger, 1978]. 

Application of the results presented above to a particular 
numerical model makes it possible to develop more concrete 
conclusions. Such an application is the basis for the results 
presented in part 2. 

The analysis presented here is restricted. It requires, in most 
valid applications, that the variability or variance of the sys- 
tem parameters or properties be relatively small; the coeffi- 
cient of variation of the driving uncertainties should be a frac- 
tion of one. Another restriction, more practically based, may 
arise as a result of the computational burden, which is consid- 
erably larger than that imposed by a simple deterministic so- 
lution. Yet the added reliability information gained in this 
analysis strongly recommends it for application. This will be 
especially true as array processors and other computer tech- 
nologies progress and erode the cost of matrix manipulation. 

APPENDIX A 

This appendix presents an introduction to Vetter calculus. 
Definitions of matrix derivative operations are given, as well 
as the identities that are most important in carrying out the 
analyses suggested in this paper. 

Any explanation of Vetter's matrix calculus must begin 
with a definition of the Kronecker product. getter's [1970, 
1971, 1973] matrix calculus is related to and uses a notation 
that is similar in form. The Kronecker or outer product may 
be illustrated as follows [Bellman, 1960]: 

all 
A * B-- b• b•2 b13 

a: • a:: 

- Ial•b• a•lb•: a•b•3 a21b• a:• b,: a:• b13 

where A is a 2 x 2 matrix, B a 1 x 3 matrix, and the operator 
ß signifies Kronecker product. In general, A ß B, with A and B 
of dimension n x p and q x r, respectively, is an nq x pr ma- 
trix made up of n x p submatrices, each equal to auB. Notice 
that the matrices involved in the Kronecker product need not 
have complementing dimensions as in the more common in- 
her matrix product [Bellman, 1960; Brockett, 1970]. 

Vetter's definition of the derivative of the matrix B(q x r) 
with respect to the matrix A(n x p) is an nq x pr matrix com- 
posed of n x p submatrices, each equal to OB/Oai•. The deriva- 
tive OB?Oai• is defined in the usual way, as a q x r matrix of the 
partial derivatives of each element of B with respect to a•. 

0B 0B 0B - 
.oo 

Oa 

OB OB 

Oae OB 

OA 

OB ' OB 

Oan I Oan2 

a•: b!• a•: b•: a•: b•31 
ae2 b• a:: b•: a:2 b•3J 

OB 

Oanp _ 
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In this paper, Vetter's notation for the derivative is used, i.e., 
0B/0A = DAB. 

Several identities are helpful in carrying out the first and 
second order analysis presented in this paper. The more im- 
portant of these are listed below. Notice that all of the identi- 
ties follow directly from application of the definitions of the 
matrix operations involved. 

For the purposes of this paper, the most important identity 
for the Kronecker product is 

ß CO = (A ß ß D) (AI) 

The derivative of a vector with respect to its transpose is a 
particularly simple relation: 

Dyy' = I. (A2) 

with y an n x I vector, the prime signifying the transpose of 
the vector and I, equal to an n x n identity matrix. This is not 
equal to 

Dyy = cs I• = 

an n'- x I vector made up of the columns of the identity ma- 
tfix In. Note that cs stands for the term column string. The de- 
rivatives of a matrix with respect to its transpose and with re- 
spect to itself are somewhat more complicated and can be 
found in Vetter [1973]. 

The derivatives of matfix inner products are 

Da(AC) -- (DaA)(I/. C) + (L, * A) DaC (A3) 

and 

Da(A ß C) = (DaA) ß C + (L,* m•. ."-• rn X n 

[(DaC), A](I•, Enxf X") (A4) 

where B is a k x I matrix, A an m x n matfix, and C an n x œ. 
The matfix my. •,xm which also appears in Appendix C, is de- -mm-%,'• Xp 

fined as a matrix made up of rn rows and p columns of sub- 
matrices each with dimension p x rn. The ijth submatflx is a 
matfix of zeroes with a one in the (j,0th clement. Thus E2x22X2 

I 0 0 0 

0 0 I 0 

0 I 0 0 

0 0 0 I 

Notice that •'• pXm has dimension mp x mp and that each l•mX p 

row and column has only a single nonzero element. The deriv- 
ative of a matrix inverse with respect to a vector is 

Db,(A -m) ---(A-m)(Db,A)(Ip ß A -m) (A5) 

with b' a I x œ vector. This relation may be proved by taking 
the derivative of the constant matfix, In --- AA-' with respect 
to b', followed by some algebra. 

Finally, if A(C) is a function of C which in turn is a func- 

tion of B, then the following matfix calculus 'chain rule' ap- 
plies. 

DaA = IDa(cs C)' ß Im](I! * OcscA) (A6) 

where A is an rn x n matfix, B is a k x I matrix, and 

cs C -' 

el 

which is an nœ x I vector made up of the columns of the ma- 
trix C. 

With the definitions and identities in this appendix, the der- 
ivations indicated in this paper can be obtained for any state- 
space model of groundwater flow. Additional relationships 
can be arrived at through construction or found in the work of 
Vetter [1970, 1973] and Brewer [1977]. 

APPENDIX B 

First derivatives of h(t + At) with respect to parameters and 
boundary and initial conditions are required in a first and sec- 
ond order analysis of the numerical groundwater flow model. 
The forms of these derivatives are presented in this appendix. 

The form of the derivatives depends on the particular solu- 
tion method applied. The derivatives of explicit, implicit, and 
steady state solutions for the heads have been derived and are 
the forms presented here 

Because the state-space equation for the heads is linear in 
terms of the initial conditions h(t) and the boundary condi- 
tions u, the derivatives of h(t + At) with respect to h(t) and u 
are easily found. The derivative of h(t + At) with respect to 
the initial conditions h'(t) can be found using identity (A3), 

awh(t + At) = Dh = ah,[{l}h(t) + Gu] = ah,[{l}h(t)] 

--(Dh,•)[In * h(t)] + •[Dh,h(t)] (B !) 

for transient solutions, with n equal to the number of elements 
in h, and identically zero (a null matfix) for a steady state so- 
lution. Similarly, the derivative with respect to the boundary 
conditions u' is 

Du,(t + At) = Du -- G (B2) 

for transient and steady state solutions. 
The matrices ß and G are complicated functions of the 

model parameters but relatively simple functions of the co effi- 
cient matrices A and C. In turn, these coefficient matrices are 
simple functions of the parameters. The exact relationshiP of 
ß to A, etc., is dependent upon the time integration scheme; 
consequentlyø the derivatives with respect to parameters must 
be derived separately for each scheme. 

The transition matrix • for the explicit scheme (13a) is lin- 
ear in A and thus the derivative has a simple form. If there are 
p uncertain or stochastic parameters, b•, i = 1, .--,.p, then the 
derivative of the vectors of heads at time t + At, h(t + At), with 
respect to the vector of parameters b' is, using (A3), (11), and 
(13a), 

Db,h(t + At) = Db '- (Db,AAt)[Iv ß h(t)] + Db,(CuAt) (B3) 
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for the explicit formulation where Ip is a p x p identity matrix. 
The matrices ß and G for an implicit scheme, as well as the 

G matrix for a steady state prediction, are functions of inverse 
matrices (see (13b) and (14)). Applying identity (A5) leads to 
the derivatives 

Db -- •(Db,AAt)[l•, ß (•h(t) + Gu)] + •(Db,CuAt) 

= •[(D•, nat) {I• ß h(t + At)} + D•,CuAt] (B4) 

for an implicit scheme for h(t + At), and 

Db- G(Db,A)(I•, * hs) + (-A-•)(Db,Cu) (B5) 

for a steady state model. 
Because the coefficients of matrices A and C depend on the 

model structure (i.e., finite difference, finite element) used to 
describe the aquifer, the derivative of these matrices with re- 
spect to the model parameters must be obtained for the spe- 
cific numerical model, discretization and parameterization 
chosen in an application. Therefore a lengthy description of 
particular cases will not be presented here. However, an ex- 
ample application will be presented in part 2. 

The calculation of the derivatives of A and C is generally no 
more difficult than calculating and filling the coefficient matri- 
ces themselves! Products of the form 

(Db, AAt)([,,!) 

where ! is some vector (n x 1) with n equal to the number of 
elements in the solution vector h(t + At), appear in both the 
first derivatives above and the second derivatives in Appendix 
C. These products have dimension n x p, and can be filled 
and manipulated with considerably more ease than the sepa- 
rate terms Db, AAt and (le ß !), which have dimensions n x np 
and np x n, respectively, and which are both very sparsely 
filled. 

If the coefficient matrices are functions of some transforma- 

tion of the uncertain parameters, then the chain rule (A6) may 
be applied to ease the derivation. This is the case, for example, 
when the logarithm of the hydraulic conductivity is the pa- 
rameter of interest and the model is based on the untrans- 
formed conductivities. 

The derivatives presented in this appendix are exact deriva- 
tives of the aquifer model and thus as accurate as the model 
itself. 

APPENDIX C 

The second derivatives of piezometric head predictions 
h(t + At) required in the second order analysis of the mean are 
derived through a direct extension of the results presented in 
Appendices A and B. The forms of the second derivatives are 
listed in this appendix. 

Because h(t + At) is a linear function of the boundary and 
initial conditions, the second derivatives with respect to u' and 
h'(t), respectively, are null matrices. The second derivative of 
h(t + At) with respect to the parameters b' and the initial con- 
ditions h'(t) is 

Dbh -- Db'• (C1) 

for transient models. For an implicit time integration scheme, 
this expression is found from identity (A5) to be 

Dbh = •(Db,AAt)(I ß •) 

if b' has dimension 1 x p and Ip is a p x p identity matrix. For 
an explicit model, 

Ubh '-- Db,AAt (C2) 

The derivative with respect to parameters and boundary con- 
ditions may be derived in an analogous manner. 

The second derivative of head predictions with respect to 
parameters b' is more complicated. When an explicit time in- 
tegration scheme is implemented, then using (A3) the deriva- 
tive is 

Db,b,(ht+at) '&' D• = (Db,b,AAt)[lpp ß h(t)] + (Db,b,Cll•t) (C3) 

where I• is a p2 x p2 identity matrix, D•,b,AAt is the second de- 
rivative of AAt with respect to the parameters b', and 
Db,b,CUAt is defined analogously. 

The steady state and implicit scheme first and second deriv- 
atives have very similar structures. This is due to their similar 
dependence on inverse matrix functions of A. For an implicit 
scheme, the second derivatives with respect to the parameters 
are 

Dbb = {(Db,AAt)(lp ß Db) + (Db,AAt)E,x."X'(Db * lp) 

+ (Db,b,AAt)[lp * h(t + At)] + Db,b,CuAt} 

and for a steady state 

(C4) 

Dbb = G(DwA)(I• ß Db) + G(DwA)E•xnnXp[(Db), l•] 

+ G(DwwA)(Ipp * hs) - A-' (Db,b,Ct!At) (C5) 

using identities (A3)-(A5) and where Eexn "Xp is defined in Ap- 
pendix A, the solution vector h(t + At) is n x 1 dimensional 
andbisp x 1. 
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