

...because California's evaporative demand is responding to increasing warmth

-3 to -4, severe drought < -4, extreme drought

4. Floods routinely occur before, during or after droughts in California → Drought does not mean that we should stop worrying about flooding

Russian River at Healdsburg

One of the floodiest basins in California (Corringham & Cayan, WCS, 2019)

Note (again): Floods identified in this talk as >45Kcfs

Thresholds

Flood stage = >45 Kcfs

PDSI: -2 to -3, moderate drought -3 to -4, severe drought

< -4, extreme drought

In the 83-yr period shown here, 15 of 40 floods occurred at end of--or occasionally just before or amidst-drought, i.e., 38% of floods fall in this 'drought-adjacent' category

albeit most floods were in the "floodier" pre-2000 era

4. Floods routinely occur before, during or after droughts in California → Drought does not mean that we should stop worrying about flooding

From 1940-2022, there is NO simple, chi-square significant association between drought years and the occurrence (or not) of major floods of the Russian River in the same yr; p=0.41, p>>0.05.

Drought WYear?

		Yes	No
Flood WYear?	Yes	9 (11)	15 (13)
	No	28 (26)	31 (33)

(Grey #) is expected if flood & drought are completely independent.

CA DWR Drought 2 Flood Symposium, Sacramento, October 17 2022

4. Floods routinely occur before, during or after droughts in California → Drought does not mean that we can stop worrying about flooding

From 1940-2022, there is also NO simple, chi-square significant association, at Russian R nr Healdsburg, between drought at beginning of water yr and the occurrence (or not) of floods later in the year. Result: p=0.27, p>>0.05.

Sept&Oct both drought months?

		Yes	No
Flood WYear?	Yes	4 (6)	36 (34)
	No	8 (6)	35 (37)

(Grey #) is expected if flood & drought are completely independent.

Definitions: Drought month when PDSI < -2 && Flood Wyr when Peak Flow > 45 Kcfs

4. Floods routinely occur before, during and after droughts in California – Using modern 15-min msmts

Russian River at Guerneville

Upshot: There is no historical statistical relation between whether we will or will not have a flood of the Russian R just because we're in a drought. California's storm regime is just too extreme for that.

In the recent era shown, flood (& monitor) stages have occurred 'separately' from drought only 2 of 6 times.

Thresholds

Flood stage = >45 Kcfs Monitor stage = >38 Kcfs PDSI: -2 to -3, moderate drought -3 to -4, severe drought < -4, extreme drought

Main Points

- California has a uniquely wild precip/water regime
 - → Highest historical yr-to-yr variability in CONUS
- California's floods & drought are uniquely tied to each other
 - Historically, it is almost entirely a lack of extreme storms that causes California "precip drought"
- Drought does not protect us from flood in California
 - → Floods historically have happened before, during and after droughts (e.g., almost 40% of the time in the Russian Basin)
 - Floods & droughts are not separable problems in Northern California (and, btw, will be less & less so in the future)